摘要: |
【目的】在建设高质量城市公共空间方面,城市公园体系发挥着重要作用,但现阶段城市公园体系往往重点关注公园的类型全面性和规模承载力,对居民多元、复杂的需求重视程度不够,供需矛盾突出。考虑供需关系的城市公园体系网络结构分析,能够识别具有重要功能的关键节点,实现公共资源的精准配置,可为城市公园体系的构建提供依据。【方法】借助社会网络分析方法,以城市公园与居民的供需关系为基础,构建上海城市公园体系社会网络模型,并对其网络结构进行评价。【结果】发现上海市城市公园重要网络节点的空间分布呈现出中心城区集聚的特征,且公园网络层级与公园等级存在错配。【结论】提出关注特定群体需求、提高服务效率,增加公园密度、提升服务水平,合理定位功能、优化公园配置等措施;发现社会网络分析法可为推动城市公园体系均衡协调发展与合理布局提供理论依据和技术方法。 |
关键词: 城市公园体系 供需关系 复杂网络 空间布局 上海市 |
DOI:10.12409/j.fjyl.202305210241 |
分类号:TU986 |
基金项目:国家自然科学基金“基于生态系统服务权衡与协同的市级生态空间多目标优化研究”(编号 52178050);上海同济城市规划设计研究院有限公司暨长三角城市群智能规划协同创新中心科研课题“基于多效益协同最优的绿色基础设施景观格局特征研究”(编号 KY-2022-YB-A05) |
|
Network Structure Evaluation and Optimization Path for Urban Park System of Shanghai City Based on Social Network Analysis |
YANG Ying1, LIU Song2
|
1.Qingdao Agricultural University;2.Tongji University
|
Abstract: |
[Objective] The urban park system is the material carrier of Park City construction. The urban development model centering on Park City puts forward higher requirements for the optimization of the structure and management innovation of the urban park system. The planning of the urban park system has long been based on the goal of spatial layout and construction to meet the increasing demands of people for ecological environment and high-quality living environment, and has been focusing on the upgrade of hierarchical arrangement and comprehensive service functions. However, in the construction of the urban park system, the emphasis on quantity rather than actual benefits has led to increasingly prominent problems such as supplydemand imbalance and low efficiency. The network structure of the urban park system is in urgent need of optimization. [Methods] In terms of technical methods, domestic and foreign scholars have adopted such methods as fractal theory, GIS network analysis and spatial syntax to conduct static evaluation and analysis of park space structure, which has promoted the optimization and improvement of spatial layout and spatial structure of urban parks. However, the current research on urban park systems is mainly based on the superposition of individual park attributes to build networks, lacking analysis of the interaction between parks, especially lacking consideration of the service capacity of urban parks under the influence of residents’ activities. The social network analysis method selects the “supply − demand” relationship between parks and urban residents to construct a social network model of urban park systems based on “human − ecology” relationship, identifies the importance of individual parks in the network structure of parks and the stability of the overall structure. On the other hand, social network analysis emphasizes the spatial mismatch between supply and demand and fair benefits from the human perspective, which can directly touch the essence of network structure relationships. Taking Shanghai as an example, the research adopts social network analysis to analyze and evaluate the urban park system. The construction of the Shanghai urban park social network model is based on the service relationship between urban parks and residential areas. The centrality index of network nodes evaluates the importance of network nodes and the hierarchical structure of the network. Specific centrality indicators include degree centrality and betweenness centrality. Moreover, the research adopts the UCINET software to calculate the degree centrality, betweenness centrality, and comprehensive node importance of each park, and adopts Netdraw to draw the network topology structure. The research also analyzes the position of each park node in the urban park network through spatial visualization in ArcGIS. [Results] Firstly, the spatial distribution of important network nodes in Shanghai’s urban parks is characterized by central aggregation distribution. Highly important parks are concentrated in the central urban area of Shanghai, especially the early developed Puxi District. Suburban parks are intermediate hubs in the network and can help residents quickly obtain the service functions of different types of parks. Parks in the outer suburbs are not that important. The research finds that the importance of park nodes is closely related to the degree and betweenness centrality of parks, which represent the influence and connectivity of parks. Relevant factors influencing the importance of park nodes are hereby detailed as follows. 1) Attractiveness of parks. High-quality parks can attract residents from long distances to visit, increasing the frequency and volume of park visits and enhancing the influence and importance of parks. 2) Spatial links between parks and residential areas. The larger the service area of a park, the more services it can provide to residents. The more prominent the synergistic role of a park in connecting other parks and ensuring residents’ use of urban parks, the more obvious the “intermediary” role and the higher the irreplaceability of the park. [Conclusion] The construction of the park system should not only consider the comprehensiveness of park scale, location, and type, but also take into account the supply and demand relationship of urban park services in a unified manner. Evaluating the rationality of the network structure of the urban park system can provide a basis for optimizing the urban park system. This research adopts the social network theory and relevant methods to, in combination with the supply and demand of urban park services, construct a social network of the urban park system based on human ecology relationship. The research finds that there is an imbalance in the spatial distribution of important network nodes and a mismatch between park level and network hierarchy in the network structure of the current urban park system, and quantitatively evaluates the structure of the urban park system. Based on this, the research proposes the following specific optimization measures. 1) Pay attention to the needs of specific groups and improve service efficiency: Matching types can reflect the adaptation of supply and demand of urban park services at the current stage, and should be upgraded in combination with urban development and optimization objectives to cope with the possible risk of imbalance between supply and demand due to the increasing urban population in the future. 2) Improve the density and service level of parks: High-hierarchy and low-level mismatched parks include community parks in the first-hierarchy network and general parks in the secondhierarchy network. It is supposed to control the scale and development intensity of residential lands around these parks, and improve the quality and resource allocation of such parks in terms of park characteristics, cultural activities, landscape aesthetics and activity facilities. 3) Reasonable positioning function and optimization of park configuration: Low-hierarchy and high-level mismatched parks, such as general parks in the second-hierarchy network, general parks in the third-hierarchy network and community parks, are usually far away from residential groups or have a certain scale of residential land around them. It is supposed to take ecological protection as the main goal, reduce or control the investment in park construction, and reserve the potential to provide recreational services after the subsequent surrounding development intensity is enhanced. |
Key words: urban park system supply and demand complex network spatial layout Shanghai City |